Printable enzyme-embedded materials for methane to methanol conversion

نویسندگان

  • Craig D. Blanchette
  • Jennifer M. Knipe
  • Joshuah K. Stolaroff
  • Joshua R. DeOtte
  • James S. Oakdale
  • Amitesh Maiti
  • Jeremy M. Lenhardt
  • Sarah Sirajuddin
  • Amy C. Rosenzweig
  • Sarah E. Baker
چکیده

An industrial process for the selective activation of methane under mild conditions would be highly valuable for controlling emissions to the environment and for utilizing vast new sources of natural gas. The only selective catalysts for methane activation and conversion to methanol under mild conditions are methane monooxygenases (MMOs) found in methanotrophic bacteria; however, these enzymes are not amenable to standard enzyme immobilization approaches. Using particulate methane monooxygenase (pMMO), we create a biocatalytic polymer material that converts methane to methanol. We demonstrate embedding the material within a silicone lattice to create mechanically robust, gas-permeable membranes, and direct printing of micron-scale structures with controlled geometry. Remarkably, the enzymes retain up to 100% activity in the polymer construct. The printed enzyme-embedded polymer motif is highly flexible for future development and should be useful in a wide range of applications, especially those involving gas-liquid reactions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conversion of methane to methanol on copper-containing small-pore zeolites and zeotypes.

This communication reports the discovery of several small-pore Cu-zeolites and zeotypes that produce methanol from methane and water vapor, and produce more methanol per copper atom than Cu-ZSM-5 and Cu-mordenite. The new materials include Cu-SSZ-13, Cu-SSZ-16, Cu-SSZ-39, and Cu-SAPO-34.

متن کامل

Single-site trinuclear copper oxygen clusters in mordenite for selective conversion of methane to methanol

Copper-exchanged zeolites with mordenite structure mimic the nuclearity and reactivity of active sites in particulate methane monooxygenase, which are enzymes able to selectively oxidize methane to methanol. Here we show that the mordenite micropores provide a perfect confined environment for the highly selective stabilization of trinuclear copper-oxo clusters that exhibit a high reactivity tow...

متن کامل

Batch conversion of methane to methanol using Methylosinus trichosporium OB3b as biocatalyst.

Recently, methane has attracted much attention as an alternative carbon feedstock since it is the major component of abundant shale and natural gas. In this work, we produced methanol from methane using whole cells of Methylosinus trichosporium OB3b as the biocatalyst. M. trichosporium OB3b was cultured on NMS medium with a supply of 7:3 air/methane ratio at 30°C. The optimal concentrations of ...

متن کامل

A High-Yield, Liquid-Phase Approach for the Partial Oxidation of Methane to Methanol using SO3 as the Oxidant

A direct approach for producing methanol from methane in a three-step, liquid phase process is reported. In the first step, methane is reacted with SO3 to form methanesulfonic acid (MSA) at 75 8C using a free-radical initiator and MSA as the solvent. Urea-H2O2 in combination with RhCl3 is found to be the most effective initiator (57% conversion of SO3; 7.2% conversion of CH4). MSA is then oxidi...

متن کامل

Catalytic Oxidation of Methane into Methanol over Copper-Exchanged Zeolites with Oxygen at Low Temperature

The direct catalytic conversion of methane to liquid oxygenated compounds, such as methanol or dimethyl ether, at low temperature using molecular oxygen is a grand challenge in C-H activation that has never been met with synthetic, heterogeneous catalysts. We report the first demonstration of direct, catalytic oxidation of methane into methanol with molecular oxygen over copper-exchanged zeolit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016